ERRATA LIST

Page 20 - line $3-2^{\text {nd }}$ brackets should have $\left(n-r_{1}-r_{2}\right)$! (missing factorial symbol)
Page 35 - line - 3 final answer should be 0.00001539
Page 37 - Power Prizes and Odds box - 1 in 1696.85 should be replaced with 1 in 696.85
Page 85 - Problem 22 Answer (B) should be 0.173
Page 86 - Problem 25 line 5 replace "operating room charges or hospital claims." With "operating room charges on hospital claims." (replace "or" with "on")

Page 104 - Exercise 3-19 - delete part (e) - (it is ambiguous for a variety of reasons)
Page 104 - Exercise 3-21 last line, replace "sized" with "sizes"
Page 112 - Exercise 3-32 - last sentence before data boxes should read, "Use means calculated from the following data:"

Page 113 - Markov Inequality - Change $Y>a$ with $Y \geq a$ in green box and in all instances in the following two lines of Proof, including as subscripts in the sigma summation notation.

Page 113 - Chebyshev's Theorem - replace box with:

Chebychev's Theorem

Let X be a discrete random variable with finite mean μ_{X} and standard deviation $\sigma_{X}>0$. Let k be greater than or equal to 1 . Then the probability that X is at least k standard deviations from the mean, μ_{X}, is less than or equal to $\frac{1}{k^{2}}$. That is,

$$
\operatorname{Pr}\left(X \leq \mu_{X}-k \cdot \sigma_{X} \quad \text { or } \quad X \geq \mu_{X}+k \cdot \sigma_{X}\right)=\operatorname{Pr}\left(|X-\mu| \geq k \cdot \sigma_{X}\right) \leq \frac{1}{k^{2}}
$$

Equivalently,

$$
\operatorname{Pr}\left(\mu_{X}-k \cdot \sigma_{X}<X<\mu_{X}+k \cdot \sigma_{X}\right)=\operatorname{Pr}\left(|X-\mu|<k \cdot \sigma_{X}\right) \geq 1-\frac{1}{k^{2}} .
$$

$\operatorname{Pg} 114$ - replace formulas in lines 4,6 and 8 with:

$$
\operatorname{Pr}\left[\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)^{2} \geq k^{2}\right] \leq \frac{1}{k^{2}}
$$

$$
\begin{gathered}
\operatorname{Pr}\left[\left(X-\mu_{X}\right)^{2} \geq k^{2} \sigma_{X}^{2}\right] \leq \frac{1}{k^{2}} \\
\quad \operatorname{Pr}\left[\left|X-\mu_{X}\right| \geq k \sigma_{X}\right] \leq \frac{1}{k^{2}}
\end{gathered}
$$

Page 126 - Exercise 3-44 (c) should reference Exercise 3-23.
Page 173-13-Above answers insert the clarifying note:
Note: The wording is ambiguous. To clarify, assume that an unknown number n of the 27 suitcases is insured and the damaged suitcases constitute a random sample of size 4 .

Page 198 - line 10 - should read, "Here we note that $f(x)=2 e^{-2 x}$,"
Page 211 - the following graph was inadvertently omitted and should be placed immediately following the CDF for Loss, X graph:

Page 239 - line -7 - should read: $=1-\operatorname{Pr}\left[Y_{x}=0\right]=1-e^{-\lambda x} \cdot \frac{(\lambda x)^{0}}{0!}=1-e^{-\lambda x}$.
Page 246 - Exercise 6-23 - The line beginning "For a deductible of 100 ," is inadvertently repeated.

Page 247 - line -2 formula should read: $\quad A^{2}=\left[\int_{-\infty}^{\infty} e^{-\left(z^{2} / 2\right)} d z\right] \cdot\left[\int_{-\infty}^{\infty} e^{-\left(z^{2} / 2\right)} d z\right]$.
Page 255 - Example 6.3-4 line 1 expression should read: Suppose that $X \sim N\left(50,8^{2}\right)$.
Page 262 - Markov Inequality - replace $\operatorname{Pr}[Y>a]$ with $\operatorname{Pr}[Y \geq a]$
Page 263 - Corrected Chebyshev's Theorem box should read:

Chebychev's Theorem

Let X be a discrete random variable with finite mean μ_{X} and standard deviation $\sigma_{X}>0$. Let k be greater than or equal to 1 . Then the probability that X is at least k standard deviations from the mean, μ_{X}, is less than or equal to $\frac{1}{k^{2}}$. That is,

$$
\operatorname{Pr}\left(X \leq \mu_{X}-k \cdot \sigma_{X} \quad \text { or } \quad X \geq \mu_{X}+k \cdot \sigma_{X}\right)=\operatorname{Pr}\left(|X-\mu| \geq k \cdot \sigma_{X}\right) \leq \frac{1}{k^{2}} .
$$

Equivalently,

$$
\operatorname{Pr}\left(\mu_{X}-k \cdot \sigma_{X}<X<\mu_{X}+k \cdot \sigma_{X}\right)=\operatorname{Pr}\left(|X-\mu|<k \cdot \sigma_{X}\right) \geq 1-\frac{1}{k^{2}} .
$$

Page 269 - Exercise 6-41 - Parts (a) and (b) should be interchanged
Page 271 - line 6 - the first σ_{X} should be replaced with $\sigma_{\bar{X}}(\bar{X}, \operatorname{not} X)$.
Page 289 - line -8 formula should read: $4 \overbrace{\int_{0}^{\infty} \int_{0}^{\pi / 2}\left(r^{2 \alpha-1} \cos ^{2 \alpha-1} \theta\right)\left(r^{2 \beta-1} \sin ^{2 \beta-1} \theta\right) e^{-\left(r^{2}\right)} r d \theta d r}^{\text {polar coordinates } u=r \cos \theta, v=r \sin \theta}$ (interchange $d \theta$ and $d r$)

Page 292 - Exercise 6-69 - replace Y with X in both occurrences.
Page 300 - insert note at top of page:
Note: Exercises 6-76 and 6-77 are repeated from Chapter 5. Rework using the Pareto properties in the current section.

Page 317 - Exercise 7-9 - in last line replace "functions" with "function"
Page 318 - line 1 - first fraction in formula should be $\frac{3}{4}$ not $\frac{1}{3}$
Page 324 - Exercise 7-12 - replace f with F
Page 335 - line 1 - replace Example 7.1-3 with Example 7.5-3
Page 337 - line 9 - replace expression with: $=\left[\frac{7 y^{2}}{8}-\frac{y^{3}}{3}\right]_{y=0}^{1}=\left(\frac{7}{8}-\frac{1}{3}\right)-(0-0)=\frac{13}{24}$.
Page 354 - Exercise 7-42 (f) - insert "•), no calculations required!" after statement.
Page 365 - lines 1-3 rewrite to read:

If we now make the substitution $z=\frac{1}{\sqrt{1-\rho^{2}}}(v-\rho u)$, then $d v=\sqrt{1-\rho^{2}} d z$, and

$$
z^{2}=\frac{1}{1-\rho^{2}}\left[(v-\rho u)^{2}\right],
$$

Page 366 - lines 1-2 - rewrite to read:
Now we substitute $z=\frac{1}{\sqrt{1-\rho^{2}}}(u-\rho v)$. This implies that,

$$
u=z \sqrt{1-\rho^{2}}+\rho v \text { and } d u=\sqrt{1-\rho^{2}} d z .
$$

Page 372 - \#4 - parts (i) through (k), rewrite to read:
(i) Find $V[X]$ and $V[Y]$.
(j) Find the covariance of X and Y
(k) Find the correlation ρ of X and Y

Page 383 - Exercise 8-4 - (b), Insert "(You may need a graphing calculator to calculate the definite integral)" after "Find the expected value of Y."

Page 389 - line 4 - replace $(2, x)$ with $(x, 0)$.
Page 396 - fifth line of Table 8.1 - replace $2.47 \ldots$ with 2.47554183
Page 398 - Exercise 8-21 (b) - to read, "Calculate the sample mean and the sample standard deviation...

Page 398 - Exercise 8-23 - remove (see hint below) from (c) and add to (d)
Page 400 - last line of proof, replace $=1-\overbrace{\prod_{i=1}^{n} \operatorname{Pr}\left(X_{1}>x\right)}^{\text {independence }}$ with $=1-\overbrace{\prod_{i=1}^{n} \operatorname{Pr}\left(X_{i}>x\right)}^{\text {independence }}$ (fix subscript in formula)

Page 405 - Exercise 8-25 - Second sentence should read, "Note that ..." (replace "the" with "that")

Page 417 - Table at top of page should read, (subscripts in first column should be 1, not 2):

	$\boldsymbol{U}_{\mathbf{2}}=\mathbf{0}$	$\boldsymbol{U}_{\mathbf{2}}=\mathbf{1}$
$\boldsymbol{U}_{\mathbf{1}}=\mathbf{0}$	$\frac{G(G-1)}{N(N-1)}$	$\frac{B G}{N(N-1)}$
$\boldsymbol{U}_{\mathbf{1}}=\mathbf{1}$	$\frac{B G}{N(N-1)}$	$\frac{B(B-1)}{N(N-1)}$

Page 441 - Exercise 8-67 - replace "Jess" with "less" in (B), (C), (D).
Page 445 - Problem 10, replace "Recall ..." with
"Recall that $\int_{a}^{b} x e^{-\alpha x} d x=\left.\left(\frac{x e^{-\alpha x}}{-\alpha}\right)\right|_{a} ^{b}+\frac{1}{\alpha} \int_{a}^{b} e^{-\alpha x} d x " \quad$ (-alpha in first term)

ANSWERS TO TEXTBOOK EXERCISES

Page 713 - 1-17 - should be 0.0853
Page 715 Chapter 1 Sample Exam 5(b) should be 0.30283
Page 717 - 2-58 - (e) should be 0.9284
Page 718-3-19(e) delete
Page 718-3-21 interchange boys and girls
Page $720-4-10$ (a) should be $4 / 5$
Page 723 - 5-20 (e) should be 0.5412
Page $724-5-50-$ should be $M G F=\frac{1}{1-3 t} \quad$ mean $=3 \quad$ variance $=9$
Page 726 - 6-37(b) should be 0.1670
Page 730-7-53(b) - should be 0.75
Page $728-6-78$ (b) should be $2^{-\frac{1}{3}} \times \Gamma\left(\frac{4}{3}\right)$
Page 731 - Chapter 7 Sample Exam 1 - should be 1/6
Page 732 - 8-6(c) should be 0.4024
Page 732 - 8-17 - should be $8,10,11,8,10$
Page $733-8-47$ (b) should be 3.227

